
A SYSTEM ARCHITECTURE WITH A SECURE

PROTOCOL FOR REMOTE SOFTWARE

TAMPERING DETECTION IN EMBEDDED

SYSTEMS

UNIVERSITI KEBANGSAAN MALAYSIA

ABDO ALI ABDULLAH AL-WOSABI

A SYSTEM ARCHITECTURE WITH A SECURE PROTOCOL FOR REMOTE

SOFTWARE TAMPERING DETECTION IN EMBEDDED SYSTEMS

2018

ABDO ALI ABDULLAH AL-WOSABI

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

SENI BINA SISTEM BESERTA PROTOKOL SELAMAT UNTUK PENGESANAN

PERUBAHAN PERISIAN DALAM SISTEM TERTANAM SECARA JAUH

2018

ABDO ALI ABDULLAH AL-WOSABI

TESIS YANG DIKEMUKAKAN UNTUK MEMPEROLEHI

IJAZAH DOKTOR FALSAFAH

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

iii

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged.

02 May 2018 ABDO ALI ABDULLAH

AL-WOSABI

P72745

iv

ACKNOWLEDGEMENT

First and foremost, praise be to Almighty Allah for all his help and giving me patience

and good health throughout all the stages of my life.

I am extremely thankful to Allah for guiding me in choosing the best possible

supervisor, Prof. Dr. Zarina Shukur, who guided me with constant and wonderful

suggestions and continuously motivated me throughout the duration of this PhD

research. I am really honored and consider myself lucky to have worked under her direct

supervision. I will forever be grateful, Prof.

I would like to thank Dr. Mohd Rosmadi Mokhtar, Dr. Rossilawati Sulaiman,

Assoc. Prof. Dr. Ravie Chandren Muniyandi, and Assoc. Prof. Dr. Elankovan A.

Sundararajan for giving me additional guidance and direction during Softam seminars

and several meetings. I owe my thanks to my dear brother Muhammad Azwan Bin

Ibrahim (from SIRIM Berhad Malaysia) for his commendable contribution to

implementing the expert evaluation review, and also to those participants for evaluating

the proposed framework and protocol. Special thanks to my dear brothers and sisters,

including Nadeem Alherbawi, Nader Salameh, Ahmed Hussain, Sameer Abdulbaqi,

Afifah Sabri, and Zaireeda Fauzee for their help, friendship, and creating a pleasant

working environment throughout my years at UKM. In addition, I would like to express

my thanks to Dr. Freya Martin for proofreading my thesis prior to submission.

I am very grateful to my dad, to whom this thesis is dedicated, and who devoted

his entire life and died out of love for his children. And to my mom who made it a point

of duty to pray for me every day. In addition, I would like to express my high

appreciation to my brothers and sisters for their prayers, patience, constant

encouragement, and unconditional support, which has helped me to complete my

research.

I sincerely appreciate my beloved wife and our children for their understanding,

motivation, and support in encouraging me to embark on this journey.

Last but not least, I must extend my thanks and gratitude to all the academic and

staff at FTSM and UKM as a whole.

v

ABSTRACT

No doubt, a person of modern society relying on Embedded Systems (ESs) has

increased rapidly and the era of digital machines is gaining popularity among users and

also systems providers. At the same time, such instruments face substantial security

challenges because they usually operate in a physically unprotected environment, and

thus attract the attackers to gain unauthorized access for utilizing the system functions.

Accordingly, system integrity is important and hence there is a need to propose a

technique/tool to verify that the original/pure systems codes have been used in those

devices. In this research, our main objective is to design a system architecture with a

secure communication for code integrity verification of an ES. Indeed, the study

presents the proposed system architecture for ESs integrity verification which includes

two main phases: fetching an ES code at a server site and examining the ES at a remote

site (using a designed user application). The integrity of that ES has been verified by

comparing the computed hash value, at the user site, to the digest value of the previously

saved code; the result could show whether that system has been altered or tampered

with. Essentially, the hash function (SHA-2) with a random key to calculate a unique

digest value for a targeted system have been utilized. Also, the study used timestamps

and nonce values, two secure keys, and public key algorithm to design a secure protocol

in-order to prevent potential attacks during data and the associated values transfer

between the server and the remote user application. As many researchers state that the

formal methods are very precise and accurate for presenting system specifications; this

study modeled and analyzed the proposed verification protocol using the

Communicating Sequential Processes (CSP) formal method approach. Thus, the study

has represented the proposed protocol and its secrecy and authentication specifications

using the CSP approach. Besides, the Compiler for the Analysis of Security Protocols

(Casper) has been used to translate the protocol description into the corresponding

process algebra CSP model. Then, the researcher used the Failures Divergences

Refinement (FDR) in-order to evaluate the proposed protocol. Those formal method

tools are considered as a reliable verification measurement in-order to figure-out

potential flaws and correct them. Overall, the final output of checking all the defined

secrecy and authentication assertions using FDR 4.2.0, and thus all the secrecy and

authentication specifications defined in the developed Casper script are passed; in other

words, the FDR fails to trace any potential attack upon the proposed protocol.

Additionally, the entire framework has been evaluated, and thus five experts were

reviewed to determine the positive features, suggested enhancements, and obstacles and

weaknesses of the proposed framework. The results obtained from expert evaluations

indicate their satisfactions and they considered the proposed framework would be

useful.

vi

ABSTRAK

Tanpa diragui, kebergantungan seseorang di dalam masyarakat moden kepada sistem

tertanam meningkat begitu ketara dan juga meningkat populariti era mesin digital

terhadap pengguna dan pembekal sistem. Pada masa yang sama, instrument ini menarik

minat penyerang untuk mengeksploitasi potensi kelemahan di dalam sistem perisian

untuk memperolehi akses tidah sah bagi menggunakan fungsi sistem atau pun

memperoleh data secara haram. Oleh yang demikian, integriti sistem adalah penting dan

oleh itu, adalah merupakan satu keperluan untuk mencadangkan satu teknik/perkakasan

berkesan untuk mengesahkan keaslian ES digunakan dalam peralatan tersebut. Dalam

kajian ini, objektif utama adalah untuk membina satu seni bina sistem yang praktikal

dengan komunikasi selamat untuk pengesahan kod integrity ES. Oleh yang demikian,

kami membentangkan seni bina sistem cadangan kami untuk pengesahan ESs integriti

yang merangkumi dua fasa utama: semasa pengambilan kod ES di tapak server (sebagai

contoh pusat data) dan pemeriksaan ES di tapak terpencil (menggunakan aplikasi

pengguna yang direka). Integriti ES yang telah disahkan dengan membandingkan nilai

hash dikira, di tapak pengguna, kepada nilai kod cerna yang disimpan sebelum ini; hasil

dapat menunjukkan sama ada sistem yang telah diubah atau diganggu. Pada dasarnya,

fungsi hash (SHA-2) dengan kunci rawak untuk pengiraan nilai yang unik tercerna

untuk sistem sasaran telah digunakan. Kami juga menggunakan setem masa dan nilai

naunsa, dua kunci keselamatan, dan algoritma kunci awam untuk mereka bentuk satu

protokol keselamatan bagi mengelakkan potensi serangan pada ketika penghantaran

data atau pun nilai berkaitan antara server dan juga aplikasi pengguna terpencil.

Sebagaimana kebanyakan penyelidik menyatakan bahawa, kaedah formal adalah sangat

tepat dan jitu dalam mempersembahkan spesifikasi sistem, kajian ini mengguna pakai

perkakas kaedah formal Proses Komunikasi Berturutan (CSP) sebagai penilaian. Oleh

itu, kami membentangkan cadangan protokol dan kerahsiaannya beserta spesifikasi

pengesahan menggunakan notasi CSP. Disamping itu, Pengkompil untuk Analisis

Protokol Keselamatan (Casper) telah digunakan untuk menterjemah keterangan

protokol kepada model proses algebra CSP yang berkenaan. Kemudian, kami

menggunakan Pembaikan Kegagalan Penyimpangan (FDR) bagi menilai protokol yang

dicadangkan. Perkakasan kaedah formal itu adalah di kenalpasti sebagai kaedah

verifikasi yang dipercayai bagi mengenal pasti ruang kecacatan seterusnya diperbaiki.

Secara keseluruhan, hasil akhir semakan semua rahsia dan pengesahan tegas

menggunakan FDR 4.2.0, dan demikian, kesemua kerahsiaan dan spesifikasi kerahsiaan

yang dinyatakan dalam Casper code dihantar; dalam kata lain, FDR gagal untuk

mengesan sebarang potensi serangan keatas protokol yang dicadangkan. Sebagai

tambahan, keseluruhan rangka kerja telah dinilai, dan untuk itu lima pakar telah

melaksanakan penilaian untuk mengenalpasti ciri-ciri positif, cadangan

penambahbaikan, dan halangan serta kelemahan ke atas rangka kerja yang dicadangkan.

Hasil yang didapati dari penilaian pakar menunjukkan mereka mereka berpuas hati dan

memberikan pandangan bahawa rangka kerja yang dicadangkan adalah bermanfaat.

vii

TABLE OF CONTENTS

 Page

DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xiv

LIST OF ABBREVIATIONS xvii

CHAPTER I INTRODUCTION

1.1 Overview 1

1.2 Research Background and Motivation 1

1.3 Problem Statement 2

1.4 Research Questions 4

1.5 Research Objectives 4

1.6 Scope of the Research 5

1.7 Design Science Research Methodology 5

1.8 Structure of the Thesis 9

CHAPTER II LITERATURE REVIEW

2.1 Introduction 11

2.2 Related Definitions and Concepts 11

2.2.1 Symmetric and Asymmetric Cryptography 12

2.2.2 Hash Functions 14
2.2.3 Message Authentication Code (MAC) 15
2.2.4 Nonce Value 16

2.3 Different Reasons for System Tampering 18

2.4 Latent Security Threats that May Lead to EST 19

2.5 Techniques for Tampering Detection 21

2.6 Systematic Literature Review 23

2.6.1 Research Questions 23
2.6.2 The Search Process 23

viii

2.6.3 Inclusion and Exclusion Criteria 24
2.6.4 Bibliography Management and Document Retrieval 25
2.6.5 Data Extraction and Analysis 25

2.7 Real-world Examples 32

2.8 Critical Analysis 33

2.9 Modelling and Evaluating the Security Protocols Using the Formal

Method Approach 34

2.10 Conclusion 36

CHAPTER III METHODOLOGY

3.1 Introduction 38

3.2 Use of Design Science Research Methodology for the Research 38

3.2.1 Problem Identification and Motivation 40

3.2.2 Objectives of the Solution 40
3.2.3 Design and Development 41
3.2.4 Demonstration 42
3.2.5 Evaluation 43

3.2.6 Communication 44

3.3 Formal Method Approach 44

3.3.1 Secrecy Features 47

3.3.2 Authentication Features 49

3.3.3 Casper and FDR 53

3.4 Research Approaches 67

3.5 Conclusion 68

CHAPTER IV A SYSTEM INTEGRITY VERIFICATION

FRAMEWORK WITH A SECURE PROTOCOL

4.1 Introduction 70

4.2 The Conceptual Framework 70

4.3 Design Overview 74

4.3.1 Basic Assumptions 76
4.3.2 Fetching the System Code 76

4.3.3 Requesting ES Code Integrity Verification 77
4.3.4 Verifying Remote-Code Integrity 79

4.4 Remote-Code Integrity Verification Protocol 80

4.4.1 Registration Process 80
4.4.2 Verification Request 84

4.4.3 Data Delivery for Integrity Verification 86
4.4.4 Verification of Code Integrity 86
4.4.5 Security Notations 87

4.5 The Other System Functions for the Law Enforcer 91

ix

4.5.1 Granting Type Approval 91
4.5.2 Inspecting System Integrity 92

4.6 Security Analysis 92

4.7 Conclusion 96

CHAPTER V DEMONSTRATION AND EVALUATION

5.1 Introduction 98

5.2 Attack Model 98

5.3 The Prototype Design 100

5.3.1 Designing an ES Device: Digital Weight Scale 101
5.3.2 Overview of the Developed Prototype 102

5.4 Modelling and Evaluating the Proposed Protocol Using the Formal

Method Approach 111

5.4.1 Protocol Representations in CSP 112
5.4.2 Protocol Representations in Casper 128
5.4.3 Checking the Protocol Specifications Using FDR 140

5.5 Results and Discussion 142

5.5.1 Results from the Conducted Experiments 142
5.5.2 Results from the Formal Method Approach 144

5.5.3 Known Cases of Protocol Failure 145

5.6 Evaluating the Entire Framework 156

5.6.1 Closed-Ended Section 157
5.6.2 Open-Ended Section 158

5.6.3 Aggregated Findings 160

5.7 Conclusion 161

CHAPTER VI CONCLUSION AND FUTURE WORKS

6.1 Introduction 163

6.2 Achievement of the Research Objectives 163

6.3 The Research Contributions 168

6.4 Suggestions for Future Work 169

REFERENCES 171

Appendix A A Casper script to specify the proposed protocol 181

Appendix B Expert evaluation form 188

Appendix C List of publications 201

Appendix D Prototype overview 202

x

LIST OF TABLES

Table No. Page

Table 2.1 Comparison of existing solutions 27

Table 5.1 The representations of the free variables 129

Table 5.2 The representations of the actual variables used in the system 137

Table 5.3 Summary of the experts’ evaluation 158

xi

LIST OF FIGURES

Figure No. Page

Figure 1.1 DSRM process model 6

Figure 2.1 Symmetric key cryptography 13

Figure 2.2 Asymmetric key cryptography 13

Figure 2.3 Hash function and digital signature process 15

Figure 2.4 CBC-based MAC algorithm 16

Figure 2.5 Potential vulnerabilities in and threats to an ES 21

Figure 2.6 Example of hash function 23

Figure 3.1 DSRM process for this research study 39

Figure 3.2 Needham-Schroeder Public Key Protocol 44

Figure 3.3 Authentication of initiator by responder 51

Figure 3.4 Authentication of responder by initiator 52

Figure 3.5 Free variables section 54

Figure 3.6 Processes section 55

Figure 3.7 Protocol description messages 56

Figure 3.8 Specification section 57

Figure 3.9 Actual variables definition section 58

Figure 3.10 Inline functions section 59

Figure 3.11 System definition section 60

Figure 3.12 The intruder information section 60

Figure 3.13 Compiling the Casper file 61

Figure 3.14 Checking the CSP script file in FDR 4.2.0 62

Figure 3.15 Protocol description messages after enhancement 65

Figure 3.16 Checking the enhanced protocol in FDR 4.2.0 66

Figure 3.17 Needham-Schroeder key distribution protocol 66

xii

Figure 3.18 Needham-Schroeder key distribution protocol with timestamp 67

Figure 4.1 Framework for operational embedded system integrity 71

Figure 4.2 Proposed conceptual framework 72

Figure 4.3 Proposed system architecture for ES integrity verification 75

Figure 4.4 Registration process 81

Figure 4.5 Remote-code integrity verification protocol 85

Figure 5.1 Circuit diagram for designing a weight scale using Arduino Uno

board 101

Figure 5.2 Registering and scanning the ES code at the server site 102

Figure 5.3 Flowchart of the first module 103

Figure 5.4 Screenshots of the system frame for fetching and uploading the

hash value of a targeted ES into a database 106

Figure 5.5 Validating the ES code integrity at the remote site 107

Figure 5.6 Flowchart of the second module 108

Figure 5.7 Screenshots of the user frames for verifying the ES integrity 111

Figure 5.8 Authentication of user agent by main server 123

Figure 5.9 Authentication of main server by user agent 126

Figure 5.10 Free variables section 129

Figure 5.11 Processes section 130

Figure 5.12 Protocol description messages 132

Figure 5.13 Specifications section 135

Figure 5.14 Actual variables definitions section 137

Figure 5.15 Inline functions section 138

Figure 5.16 System definition section 139

Figure 5.17 Intruder information section 140

Figure 5.18 Compiling the proposed protocol in Casper 141

Figure 5.19 Refinement assertions represented in the CSP file 142

xiii

Figure 5.20 Screenshots of the prototype results 144

Figure 5.21 Result of checking the refinement assertions using FDR 4.2.0 145

Figure 5.22 Description and specification of protocol failure case 1 146

Figure 5.23 Checking failure protocol case 1 using FDR 4.2.0 148

Figure 5.24 Description and specification of protocol failure case 2 152

Figure 5.25 Checking failure protocol case 2 using FDR 4.2.0 153

Figure 6.1 Linking the DSRM process for the research with the research

objectives 167

xiv

LIST OF SYMBOLS

 external choice

(+) (= ⊕) the bit-wise exclusive-or

∀ x ∶ A • P for all x in set A such that P

¬ P not P (P is not true)

A \ S A without S

b ? x on (channel) b input to x

Com the commit event

dbServ the database server agent

DecprivKey(C) denotes the decryption of cipher text C under the

corresponding private key privKey

EncpubKey(M) denotes the encryption of message M under the public key

pubKey

env the environment (the undefined sender) of the designed system

esCode Code of an embedded system

esHMAC (= ES_HMAC) represents the calculated digest value of the

system’s code

esId (=ES_ID) the identifier of an embedded system

hf(x) the hash function returns the digest value of x

hk (=Hk) hash key

Init the initiator agent who wills to run the protocol

integVer result of the system integrity verification

Km the session key which could be used by Mallory (i.e., the

attacker) agent

lastVerDate the last verification date for an embedded system

m % v the recipient of the message should not attempt to decrypt the

message m, but instead store it in the variable v

NAtc a nonce value (i.e., random number) generated by the attacker

agent

Nm similar to NAtc

xv

nr (= nRec = Nrec) a nonce value (i.e., random number)

generated by the receiver agent

ns (= nSen = Nsend) a nonce value (i.e., random number)

generated by the sender agent

nServSys (= NServerSys = servNonce) a nonce value (i.e., random

number) generated by the server system agent

nUsr (= NUser = usrNonce) a nonce value (i.e., random number)

generated by the user agent

P ||| Q P interleave Q

P ∧ Q P and Q (both true)

P ⇒ Q if P then Q

PkMallory the public key of Mallory (i.e., the attacker) agent

pkServSys (= PkServerSys) the public key of the server system agent

pkUsr (= PkUser) the public key of the user agent

PubK(X) the public key function retrurns the public key of X

PubKeyAtc the public key of an attacker

pubKeyR the public key of the receiver agent

pubKeyS the public key of the sender agent

PubKfun(X) similar to PubK(X)

R (= Rec) the receiver agent

regExpDate the expiry date of the user registration

Resp the responder agent

Run the running event

S (= Sen) the sender agent

SecK(X) the secrter key function retrurns the secret (i.e., private) key of

X

SecKeyAtc the corresponding private key of PubKeyAtc

secKeyR the corresponding private key of pubKeyR

secKeyS the corresponding private key of pubKeyS

SecKfun(X) similar to SecK(X)

secVal the secret value

xvi

servSys the server system agent

sk (= Sk) session key used by honest agents

Skey(X) The secure key function that returns the symmetric server’s

secret key (i.e., SkeyServSys)

SkeyServSys (= SKeyServerSys) the symmetric secure key that the server

agent shares with the database server

SkMallory the corresponding private key of PkMallory

skServSys (= SkServerSys) the corresponding private keys of pkServSys/

PkServerSys

skUsr (= SkUser) the corresponding private keys of pkUsr/PkUser

ts (= TS) timestamp value

usr the user agent

Usr_ID the identifier of user agent

x != e x is not equat to e

x : A → P (choice of) x from A then P

x := e x becomes (value of) e

x = = e equality operator evaluates to true if two values are equal

x ∈ N x is a member of N

XOR Exclusive-or operation

xvii

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

CA Certificate Authority

Casper Compiler for the Analysis of Security Protocols

CSP Communication Sequential Processes

DoS Denial of Service attack

DSRM Design Science Research Methodology

ES Embedded System

EST Embedded System Tampering

etc etcetera; and so forth

FDR Failures Divergences Refinement

FPGA Field Programmable Gate Array

FTSM Faculty of Information Science and Technology

HMAC Hash-Based Message Authentication Code

Id Identifier

i.e. that is/in other words

IS Information System

MAC Message Authentication Code

OTP one-time pad

QR Quick Response

RSA Rivest-Shamir-Adleman algorithm

SHA Secure Hash Algorithm

UKM Universiti Kebangsaan Malaysia

11

CHAPTER I

INTRODUCTION

1.1 OVERVIEW

Embedded Systems (ESs) are now available anywhere and anytime and are an

established part of daily routines. Their usage in sensing, storing, processing, and

transferring personal and private data in devices such as ATM cards, modern car

systems, and mobile phones has become widespread and their utility irreplaceable.

However, developers of those systems face significant challenges in relation to the issue

of code integrity and information security. Software tampering is one of those

challenges, and software integrity verification is one of the main approaches used to

defeat it.

In fact, checking code integrity achieves tamper-proofing by identifying

unauthorized alterations and recognizing whether any tampered code is being executed

or any tampered data are being used. Therefore, protecting the software stored in an

Embedded System (ES) is of paramount importance. Obviously, this research

emphasizes that there is no complete solution to this problem, and the major aim of

conducting this research is to contribute positively (even if in a modest way) to fighting

against software tampering in such systems.

1.2 RESEARCH BACKGROUND AND MOTIVATION

The reliance of individuals in modern society on ESs has increased rapidly, and the era

of digital machines is being embraced by users and by device/machine providers alike.

The advancements in ES applications are leading to the provision of user-friendly

2

services. Embedded Systems are used to facilitate people’s daily activities, and can be

found in items such as digital scale machines, digital cameras, modern cars, mobiles,

and ATM cards, which are used extensively most of the time every day. Thus, the

security of such systems has become the key challenge and an interesting research area

since human lives are affected directly by the digital revolution (Al-Sharafi et al. 2016;

Singh, Dilawari & Manimegalai 2014; Subashini, & Kavitha 2012), and this will likely

remain the case for the foreseeable future (Brasser, Rasmussen & Tsudik 2016).

In fact, such systems face substantial security challenges because they usually

operate in physically unprotected environments (Nimgaonkar, Gomathisankaran &

Mohanty 2013a, 2013b; Sridhar, Hahn & Govindarasu 2012). Embedded System

Tampering (EST) is a latent threat that can be implemented by using certain tools to

inject tampered/malicious codes into systems. Attackers often exploit potential

vulnerabilities in a targeted system in order to gain unauthorized access and then utilize

the system or obtain the system’s data illegally. Basically, those potential vulnerabilities

can be exploited in any ES that is not well designed and does not include anti-tamper

techniques/algorithms. Mostly, attackers aim to acquire control over some features of

the software through an illegal alteration of the executable code and behaviour (Dalai,

Panigrahy & Jena 2012; Stamp 2006).

1.3 PROBLEM STATEMENT

Software tampering is not limited to certain countries; cases have occurred in Asia and

in Europe too. One real-world example is the malpractice that was detected in a retail

fuel outlet in Malaysia. A petrol station in Silibin, Ipoh was sealed after law enforcers

found that the administrator had manipulated all of its 26 fuel pumps to make more

profit illegally. The metrology expert found that the petrol gauges at the pumps had

been adjusted with dubious readings (Ibrahim et al. 2015; Kaur 2013). Similar cases

have been reported in India (Anand 2013). Another real-world example comes from

Germany, where the authorities found a number of illegal manipulation cases had been

conducted against the recorded data on modern cash registers (Reckendorf et al. 2010).

3

Undoubtedly, authorized persons and organizations are aware of such illegal

manipulations, so they need an applicable technique and procedure to combat such acts.

Hence, tampering detection is gaining more attention and being given higher priority

by ES designers and developers (Babar et al. 2011; Santucci 2010). Checking code

integrity achieves tamper-proofing by identifying unauthorized alterations and

recognizing whether any tampered code is being executed or any tampered data are

being used. Such techniques/tools do not prevent theft but instead discourage software

tampering. Thus, unless appropriate techniques/tools are used to detect the code

integrity of targeted devices, not only customers will be lost, there may also be

undesirable impacts.

Despite earlier studies, the integrity verification of remote ESs remains a vibrant

research topic (Brasser et al. 2016). Since most (if not all) of ESs usually operate

outdoors in physically unprotected environments, users need to conduct integrity

verification remotely. Hence, a trustworthy mechanism of system verification is one of

the main principles for remote verification, and the existence of a secure protocol based

on cryptography to secure communications from attackers is mandatory. Coker et al.

(2011) emphasize that it is especially challenging to satisfy the trustworthy principle

where data are transmitted over a public network. Thus, the ordinary approach to

handling this challenge is to utilize cryptographic primitives.

On the other hand, the early study of the system under development stimulates

design decisions for further enhancement. Thus, obtaining early feedback on simulation

models of system processes helps in gaining a better understanding of the behaviour of

the developed system under more realistic settings. As a result, the ideas that system

designers can obtain through prototypes may lead to refined protocols and algorithms,

and thus contribute to the whole system design process (Richerzhagen et al. 2015). In

fact, many “researchers have found the use and importance of prototypes to be

substantial” (Elverum, & Welo 2014, p. 492).

Although it is recognized that the security of cryptographic primitives is

guaranteed by the use of state-of-the-art cryptographic algorithms (such as the Rivest-

Shamir-Adleman (RSA) public key cryptosystem and Secure Hash Algorithm 2 (SHA-

4

2), the security of the remaining aspects must be carefully analysed (Basile, Di Carlo &

Scionti 2012). Thus, to develop high-integrity systems in which security attributes are

important, the researcher needs to prove the defined secrecy features formally

(Gargantini, Riccobene & Scandurra 2009, 2010). Indeed, a formal method approach

assists designers and users to analyse and verify the proposed system at any point in the

system life cycle (Woodcock et al. 2009). Therefore, this research proposes an efficient

framework and a secure protocol to verify the integrity of an ES’s code and evaluates

the proposed protocol in a formal way.

1.4 RESEARCH QUESTIONS

This research intends to address the above-stated problems through the actualization of

the thesis objectives, so the following research questions have been defined:

RQ1: What components are required in order to design a framework for code integrity

verification in an Embedded System?

RQ2: How can basic cryptographic primitives be utilized to design a protocol to secure

the data exchanged when conducting remote-code integrity verification?

RQ3: How can the code integrity verification system be simulated and tested against

an Embedded System?

RQ4: Are the secrecy and authentication features of the proposed artifact robust and

secure?

1.5 RESEARCH OBJECTIVES

To answer the above research questions, this study attempts to achieve the following

objectives:

i. To propose a framework to verify the code integrity of an Embedded System

and identify its components;

5

ii. To design a secure protocol for remote-code integrity verification of Embedded

Systems;

iii. To develop a prototype for detecting software tampering in an Embedded

System and test it against a simulated measurement instrument; and

iv. To evaluate the secrecy and authentication specifications of the proposed

protocol and the entire framework using a formal method approach and an

expert evaluation, respectively.

1.6 SCOPE OF THE RESEARCH

This study focuses on proposing a framework with a secure protocol for ES integrity

verification in order to help potential users verify the system code integrity remotely.

The framework is divided into two modules: (i) registering and scanning the system

code at the server site and (ii) validating the system code at the remote site. The

framework is based on the literature review and the outcomes of the conducted

feasibility study.

For the purpose of the evaluation process in this research, a digital measurement

prototype is designed using an open-source hardware platform (Arduino Uno board),

while the code integrity verification system is demonstrated in Java language using

Eclipse software (Kepler Service Release 2). In addition, a Communication Sequential

Processes (CSP) formal method approach, the Compiler for the Analysis of Security

Protocols (Casper), and the model checker Failures Divergence Refinement (FDR)

described in Lowe et al. (2009), Roscoe (2010) and Ryan et al. (2010) are used to model

and analyse the secrecy and authentication specifications of the proposed protocol.

1.7 DESIGN SCIENCE RESEARCH METHODOLOGY

A recognized common framework is essential for design science research studies in the

field of Information Systems (ISs) and a rational model or template is required so that

readers and commentators can identify and assess the results of such studies.

Researchers propose a Design Science Research Methodology (DSRM) for the

6

production and presentation of design science research on IS. Figure 1.1 illustrates a

typical DSRM process model.

Figure 1.1 DSRM process model

Source: (Peffers et al. 2007)

7

This methodology contributes to IS research by introducing a commonly

accepted outline for effectively conducting design science research and a rational model

for its presentation. It is inspired by the need to improve the environment through the

proposal of innovative artifacts and novel processes for designing the proposed artifacts

(A. Hevner & Chatterjee 2010a; B. Kuechler & Vaishnavi 2008; Peffers et al. 2007).

The Research Process Model

Researchers have identified six phases that need to be conducted during research in

order to accomplish the development of a coherent methodology. These phases could

be adopted to design the research methodology for this study. Figure 1.1 shows the

process model that consists of six phases of activity in a nominal sequence as follows

(A. Hevner & Chatterjee 2010a; A. R. Hevner et al. 2004; Peffers et al. 2007; W. L.

Kuechler & Vaishnavi 2012):

i. Problem identification and motivation. An interesting problem could be

defined by reference to multiple sources such as different fields of industry or

related disciplines. As one of the aims of design science research is to propose

technology-based solutions to defined business issues, this activity involves the

gathering and analysis of related information. In fact, defining and representing

problems in an actual application environment is the first step in conducting

good design science research. The resources needed for this phase consist

knowledge of the defined problem and the significance of its solution.

ii. Define the objectives. A number of researchers explicitly convert the defined

problem into a list of research objectives or requirements. They derive the

objectives of a proposed solution from the problem definition and knowledge of

what is possible and feasible. These objectives could be quantitative, such as the

terms in which a required solution would be better than current solutions. Or

they could be qualitative objectives, such as a description of how a proposed

artifact is projected to support solutions to addressed problems. The resources

needed for this activity comprise knowledge of the state of the defined problem

and existing solutions, if available, and their usefulness.

8

iii. Design and development. The implementation of the proposed artifact is

executed in this phase, and of course, implementation techniques vary

depending on the proposed solution. This phase consists of determining the

required functions of the proposed artifact and its architecture, and then creating

the actual artifact. Also, constructing a formal proof would be required for an

algorithm. Essentially, the implementation itself could be very ordinary and

need not show innovation beyond the state-of-practice for the proposed solution;

the novelty is mainly in the design and not the implementation of the artifact.

The resources needed to achieve this phase include knowledge of

theory/theories that could be utilized in a proposed solution.

iv. Demonstration. The use of the designed artifact to solve the defined problem

needs to be demonstrated. This phase may involve using the proposed artifact in

an experiment, simulation, case study, or other suitable activity. The resources

required for this phase consist of effective knowledge for solving the defined

problem by using the designed artifact.

v. Evaluation. To determine how well the designed artifact supports a solution to

the defined problem the artifact needs to be evaluated. This phase could be

achieved by comparing the research objectives defined in the second phase to

actual observed results from use of the designed artifact in the demonstration.

The resources needed for this phase include knowledge of related metrics and

analysis methods. The evaluation process may take different forms based on the

type of problem and the designed artifact. It may consist of a comparison of the

functions of the designed artifact with the objectives defined in the second

phase, outcomes of satisfaction surveys, client feedback, or simulations.

Quantifiable measures of system performance such as response time or

availability could also be included. Theoretically, an evaluation may consist of

any proper empirical indication or logical proof. Then, if the defined objectives

need to be refined or the design of the artifact needs to be improved, the

researchers may iterate back to the second or to the third phase, respectively.

Otherwise, the researchers may decide to continue on to the communication

phase.

9

vi. Communication. The defined problem and its significance, the proposed

artifact and its design, and the efficacy of the conducted research should be

published in scholarly and/or professional publications for researchers and other

related audiences. Presenting the research to a technology-oriented audience,

with appropriate detail, facilitates the implementation of the designed artifact

and its utilization within a targeted field. Besides, communicating the research

outcomes helps the targeted audience to construct a cumulative knowledge base

for additional improvement and assessment. This phase involve knowledge of

the disciplinary culture.

1.8 STRUCTURE OF THE THESIS

This research thesis consists of six chapters that contain a number of sections and

subsections. The thesis begins with Chapter 1, the introduction chapter, which

introduces the background to the study and the research problem, the research questions,

the main objectives of the study, the scope of the research, the adopted DSRM, and an

overview of the structure of the thesis.

Chapter 2 provides a review of the research work related to the study scope. It

consists of eight sections. The first five sections focus on the related definitions and

concepts, some reasons and potential threats for conducting system tampering, and

effective techniques for detecting tampering. Then, the sixth section shows the

outcomes of the conducted systematic review on selected studies published between

2008 and 2016 that are related to software tampering in ESs, while the seventh section

introduces two real-world projects.

Chapter 3 presents the DSRM for the research. In particular, the third section

applies the formal method approach on a given example in order to explain how to

utilize the approach for analysing the secrecy and authentication features of the tested

protocol.

Chapter 4 describes the conceptual framework and the proposed system

architecture and provides an explanation of its components in the second and third

10

section, respectively. The fourth section of the chapter describes the remote integrity

verification protocol proposed by the study. After that, section five discusses other

functions for the law enforcer that are highlighted in the conceptual framework, and

section six lists the security features of the proposed artifacts.

Chapter 5, the demonstration and evaluation chapter, presents the potential

attack model related to the proposed solution and then demonstrates the designed

prototype and the results of applying the CSP formal method approach to validate the

proposed solution. It then discusses the results of an evaluation of the entire framework

by five experts.

Finally, Chapter 6 provides the conclusion to this research. The chapter indicates

how the research objectives were achieved, highlights the main contributions of the

research, and then makes some suggestions for future research.

1111

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter provides a review of a number of previous studies on the topic of interest.

There are nine sections in this chapter including this introduction section. The second

section identifies the main components of system security, while the third section

explains some of the goals of an adversary when conducting attack(s). Section four

introduces the latent security threats that may lead to system tampering. Then section

five introduces varieties of techniques for detecting a system tampering. Section six

consists of three subsections that explain the modelling and analysis of protocol

specifications using the formal method approach and the testing of the protocol in

Casper and the FDR model checker. Section seven presents the results of the systematic

literature review, and the results of the conducted processes are provided in five

subsections. Then, section eight briefly describes a number of real-world examples of

system tampering, while the last section summarizes the chapter.

2.2 RELATED DEFINITIONS AND CONCEPTS

Goel (2010, p. 285) defines a threat, vulnerability, and a security attack as follows: “A

threat is a potential violation of security and causes harm. A threat can be a malicious

program, a natural disaster, or a thief. Vulnerability is a weakness of system that is left

unprotected. Systems that are vulnerable are exposed to threats. Threat is a possible

danger that might exploit vulnerability; the actions that cause it to occur are the security

attacks.”

For example, if a developer creates a database with a default user name and

password, it is vulnerable to being accessed (accidentally triggered or intentionally

12

exploited); an unauthorized user (either locally or remotely) might exploit that security

flaw and be a security threat; and an intruder that compromises the system and logs into

the database constitutes a security attack.

On the other hand, defining the security aspects of an ES is related to the main

principles of information security: integrity, availability, and confidentiality; to ensure

that only authenticated and legal entities are able to reliably access secure information

(Davis & Clark 2011). Integrity means that properties can be altered only by authorized

parties or by an authorized means and relates to data, software and hardware (Zissis &

Lekkas 2012). While system integrity has been defined as “assures that a system

performs its intended function in an unimpaired manner, free from deliberate or

inadvertent unauthorized manipulation of the system” (Stallings 2014, p. 10), trust is

negatively affected by the exposed vulnerability of systems that have been promoted as

reliable and secure (Lippert & Swiercz 2005). As regards the ES, the system

supplier/operator guarantees the user of its integrity by providing a reliable system in

terms of ensuring that any modifications or enhancements (if necessary) are made by

parties of sufficient authority. Therefore, the user is given an assurance that the system

can be trusted for use and does not have any unauthorized modifications. Availability

refers to ensuring the system/data will be accessible when an authorized user needs it,

and without improper delay or undue halting. Confidentiality is about preventing the

unauthorized reading of data and programs (Al-Wosabi & Shukur 2015; Rogers &

Milenković 2009).

2.2.1 Symmetric and Asymmetric Cryptography

The most known and applied types of cipher systems are symmetric and asymmetric. In

symmetric cipher system, it is easy to infer the decryption key from the encryption key.

In practice, for the encryption and decrypting key are often identical. In fact, the

symmetric key value needs to be distributed between the sender and the receiver before

exchanging the secret messages. Thus, ensuring adequate protection for those keys must

be estimated and managed well. In fact, key management that includes key generation,

distribution, storage, change, and destruction, is considered as one of the ultimate

13

difficult aspects of achieving a secure system (Chandra et al. 2014; Kumar, Munjal &

Sharma 2011; Tripathi & Agrawal 2014).

Figure 2.1 Symmetric key cryptography

Source: (Chandra et al. 2014)

However, in asymmetric cipher system, it is practically impossible to infer the

decryption key from the encryption key, then the system is called asymmetric (It is also

called a public key cryptosystem). In asymmetric cipher system, knowledge of the

encryption key is of no practical use to the interceptor. In fact, this key usually made

public and thus there is no need to share the encryption key between the sender and the

receiver since it is not secret. Hence, there is no need to ensure mutual trust between the

two parties (Chandra et al. 2014; Kumar et al. 2011; Tripathi & Agrawal 2014).

Figure 2.2 Asymmetric key cryptography

Source: (Chandra et al. 2014)

14

For example, those types of keys are used in many security applications and

more precisely in a two-level key hierarchy system, such as Pretty Good Privacy (PGP).

In such system, symmetric keys (also called session keys) are utilized to encrypt data

transferred, and asymmetric keys are utilized to encrypt those symmetric keys. In fact,

PGP has varieties of usages including protecting email and files. Moreover, the most

well-known symmetric block cipher is Data Encryption Standard (DES), and RSA

public key cryptosystem is considered as the most well-known asymmetric block cipher

(Chandra et al. 2014).

2.2.2 Hash Functions

The main purpose of using hash functions is that the calculated hash value is a

condensed representative image of the original text. The hash value is known as a digital

fingerprint, a message digest, or a hash. In fact, hash functions usually accept input

messages of arbitrary lengths and generate hash values of fixed lengths. If two input

messages result in identical hash values then a collision has occurred. Hash functions

widely applied in many cryptography applications, such as integrity verification and as

part of the digital signature process.

One of the essential uses of hash functions is a provision of data integrity.

Firstly, the hash value corresponding to a targeted data d is calculated at first time t1.

The calculated hash value (not the original data) is protected in a certain way. At a later

time t2, an integrity verification is executed to decide whether the original data has been

modified, i.e., whether a data d' is identical to the original data. The hash value of d' is

calculated and then compared to the previously calculated hash value; when the two

values are equal, one accepts that the inputs are also equal, and thus that data has not

been modified.

In asymmetric cipher system, a hash value of the message is calculated by

utilizing a hash function to that message. Then the digital signature is generated from

the hash value, which represents the message, by using the asymmetric algorithm with

the secrete (i.e., the private) key (as shown in Figure 2.3). Hence, only the owner of that

secret key can produce the generated digital signature.

15

Figure 2.3 Hash function and digital signature process

Source: (Piper & Murphy 2002)

2.2.3 Message Authentication Code (MAC)

Unlike un-keyed hash functions, the keyed hash functions uses a secret key. The keyed

hash functions whose specific purpose is message authentication are referred to as

message authentication code (MAC). Certainly, in order to verify the sender of the

received message, hash functions can also be applied with other cryptographic methods.

Combining hash algorithms with encryption method can produce special value called

message digest (or called message hash value) that identify the sender of the received

message. Those special digests are called MACs (Mouha et al. 2014). There are three

main types of MAC algorithms based on their underlying building blocks (Nandi 2009):

Hash MAC (HMAC): The HMAC algorithm has been standardized by the

National Institute of Standards and Technology (NIST). It has been widely used by a

number of secure internet protocols (such as some versions of IPSec) to produce

authenticity of data. Moreover, this algorithm can prevent replay attack by adding a

timestamp value to every message before sending it. Then, the receiver of that message

will be able to verify that the message has not been previously received (Preneel 2010;

Silva 2003).

16

Universal hash-based MAC: This type of MAC algorithm comprises of two

building blocks; an effective keyed compression function that decreases long inputs to

a fixed length and a method to process the short hash result and an output

transformation. In practical structures, the encryption with the one-time pad is typically

replaced by applying a pseudo-random function with a secret key (Handschuh &

Preneel 2008).

CBC-based MAC algorithm: The most commonly used MAC algorithm based

on a block cipher makes use of Cipher Block Chaining (CBC). However, it is widely

known that the CBC MAC is not secure if the message length is not fixed due to the

length extension attack (Iwata & Kurosawa 2003; Zhang et al. 2012). Thus, there are

many different alternatives have been developed include OMAC, one-key CBC-MAC,

or XCBC.

Figure 2.4 CBC-based MAC algorithm

Source: (A. J. Menezes, Oorschot & Vanstone 2001)

2.2.4 Nonce Value

A nonce value, which is often random number or pseudorandom number value, is a

value that varies over a given time period that is non-foreseeable and thus can be used,

17

along with encryption and/or hash functions, to restrict or deny unauthorized replay or

re-execute of a connection (Ahlquist 2011). Informally, this type of function is a

function that a computationally limited attacker cannot identify with likelihood

substantially greater than half from a function chosen uniformly at random from all

functions with a similar range and domain (Handschuh & Preneel 2008).

Usually, a random number generator used for generating nonces (Zenner 2009).

Nonce values (i.e., random numbers) are used by a wide variety of network security

algorithms and protocols, such as (Stallings 2014):

 Cryptographic keys distribution and mutual-authentication schemes. In such

schemes, the sender and receiver participate by exchanging data to distribute

cryptographic keys and mutual-authenticate each other. Hence, nonces values

usually used to successfully execute handshaking to deny replay attacks. In fact,

using the randomness function for the nonces values frustrates an attacker's

efforts to identify or estimate the nonce value to regenerate an old transaction.

 Session key generation. A secret key for symmetric encryption is created and

used for a single session (or transaction) and is valid for a limited period of time.

This secret key is widely known as a session key.

 Key generation for the RSA public key cryptosystem. The essential definitions

of security for public key cryptosystem provide no guarantees if the randomness

is inadequate (Bellare & Tackmann 2016). For instance, generating a pair of

keys (i.e., the private key and public key) requires determining two prime

numbers. In order to prevent the discovery of those two numbers, those primes

must be large numbers. Indeed, there are no useful methods that produce

arbitrarily large primes and thus there is a need to manage this issue. The most

widely used procedure is to pick at random an odd number of the desired order

of magnitude and check if that number is prime. If not, then pick sequential

random numbers till a desired prime number is found.

 Bit stream generation for symmetric stream cipher. With a well-designed nonce

value generator, a stream cipher can be can be as secure as a block cipher of

18

similar key size. In fact, stream ciphers, which do not utilize block ciphers as a

building block, are typically faster and require quite smaller code than do block

ciphers. For example, a developer can implement the Rivest Cipher 4 (RC4)

algorithm by writing a few lines of code.

2.3 DIFFERENT REASONS FOR SYSTEM TAMPERING

In order to design an acceptable framework for software tampering detection, the

adversary’s goals need to be identified. What do attackers hope to gain through the

implementation of such illegal action(s)? Obviously, their purposes vary and typically

include one or more of the following (Dalai, Panigrahy & Jena 2012; Ravi 2004; Stamp

2006):

i. Unauthorized access/usage: when an attacker illegally bypasses the predefined

software access control privileges, the attacker can gain full/partial access to

software functions. For example, an attacker may attempt to remove the

software watermarks by tampering with the original code. However, if the

original software is used to access classified data, then the attacker’s purpose is

to gain unauthorized access to that data. In certain scenarios, such as in

tampering with an e-commerce application, an attacker may aim to attack the

application in order to gain unauthorized discount or free services.

ii. Unlicensed clones: this kind of illegal act is one of the most common causes of

financial loss for many software companies, and especially because it leads to

loss of competitive advantage for the original software developer. The attacker’s

goal is to understand enough about the main functions of the targeted software.

This type of attack can be achieved by simulating the software’s routines either

for the purpose of accessing some of the intellectual properties, or for the

purpose of reusing the software’s crucial processes in some other programs.

iii. Attacking software integrity: injecting a malicious code, such as a virus or

malware, into the targeted software may lead to a breach in software integrity.

The purpose of such an attack is to add to/modify software functions illegally.

In fact, this type of attack can be made by an authorized or unauthorized user,

19

and that is why the goal of a tampering detection model is not only to detect

illegal modifications by unlicensed users, but also to detect illegal modifications

by accredited users.

iv. Disrupting system functions: attacking the system’s availability could cause

system halting or an annoying delay in providing a normal service. This type of

attack is usually executed by exhausting the system’s resources and is popularly

known as a denial-of-service attack (DoS attack).

2.4 LATENT SECURITY THREATS THAT MAY LEAD TO EST

Essentially, the aim of this research is to enhance ES security by facilitating tampering

detection when a device is being utilized. Theoretically, there is, as yet, no such thing

as a 100% secured system (Kim et al. 2009), but incorporating a verification system

into an ES would (at the very least) increase the overhead efforts involved in conducting

attacks on such systems.

There are a number of potential attacks that must be taken into account and more

effort is needed to identify security tools/techniques that will enable the success of this

framework (as shown in Figure 2.5). Actually, defining the latent threats is the first step

in overcoming them. A number of researchers (Kim et al. 2009; Ravi et al. 2004;

Sagstetter et al. 2013) have identified the following threats that may pose a security risk

to ESs and that have to be taken into account:

i. Reverse engineering: the intention of such an attack is to reproduce (illegally)

the ES functionality to make an unauthorized modification. The altered system

then pretends to offer normal functionality while it is actually doing something

else.

ii. Complex design process: there is no guarantee that an ES that is well designed

will be free of malfunctions or malicious software. Also, in a complex design it

may not be possible to handle a pre-validation process for each system

component to ensure security. Furthermore, even if each part of a system is

20

secure in itself, it is known that the composition of these parts may expose new

vulnerabilities.

iii. Malicious software: this is the most widespread form of attack that may

threaten any system, and it is the most easily and cheaply available to most

attackers. There are different types of malicious software such as viruses,

worms, Trojan horses, etc. Most of these agents exploit the latent vulnerabilities

in a system’s programming, such as buffer overflow which is a common

loophole in operating systems and application software that can cause

undesirable effects.

iv. Wireless access: while using wireless communication protocols like 3G or

Bluetooth to facilitate execution of the system’s service(s), potential/latent

vulnerabilities have been demonstrated to exist for all of those protocols. For

instance, exploiting a vulnerability in 3G to gain access to the software in an ES

may allow hackers to make an illegal modification or may cause the system to

be halted.

v. Physical access: introducing physical access, such as using a USB port for

accessing the system, introduces another threat as an attacker could use it to

make an unauthorized modification/alteration to the software.

21

Figure 2.5 Potential vulnerabilities in and threats to an ES

2.5 TECHNIQUES FOR TAMPERING DETECTION

In their books, Christian S. Collberg, and Jasvir Nagra (2009), and Hossein Bidgoli

(2006) identify a number of feasible techniques for protecting the intellectual property

of software, including:

i. Obfuscation: the specific purpose of the process is to increase the burden and

duration of reverse engineering that is aimed at targeted software. It is performed

by rewriting (transforming) the original code into an obfuscated version with the

same observable behaviour. There are three ways of achieving code obfuscation:

a. Lexical transformation: the code’s lexical structure is changed to

annoy the reverse engineer. For example, by hiding the source code

formatting information that is sometimes available from the Java

bytecode or by scrambling identifier names.

22

b. Control transformation: the program’s control flow is obscured. For

example, by using more complicated but equivalent loop conditions, and

implementing multithreaded instead of sequential processes.

c. Data transformation: this kind of obfuscation can be implemented by

obscuring the data structure. For example, splitting variables, and

changing the encoding of logical values True and False into Boolean

variables.

ii. Watermarking: a secret message can be embedded into software in order to

prove ownership without adversely affecting software performance. Also, it

must be detectable by the original developer. There are two types of software

watermark:

a. Static watermarks: the watermarks are embedded into the application

executable itself.

b. Dynamic watermarks: the watermarks are constructed at runtime and

stored in the dynamic state of the program.

iii. Tamper-proofing: to detect software tampering, tamper-proofing code can be

added to the targeted software. This technique can be implemented by

examining the integrity value of software code using certain functions to ensure

that it is identical to the original code (Kaczmarek & Wrobel 2014). The most

popular techniques to achieve integrity include Checksum, Cyclic Redundancy

Check (CRC), Message Authentication Code (MAC), and Message Integrity

Code (MIC) (Bishop 2005; Piper & Murphy 2002). Furthermore, the

cryptographic hash function is one of the possible ways to generate MACs, also

called digest values (as shown in Figure 2.6). The use of a hash function like

Message Digest algorithm 5 (MD5) or the Secure Hash Algorithm (SHA) has

become a standard approach in many applications and protocols (Dalai et al.

2012; Myles & Jin 2010).

23

Figure 2.6 Example of hash function

Source: (Donohue 2014)

2.6 SYSTEMATIC LITERATURE REVIEW

The aim of this section is to review the current state of the art on software tampering in

ESs. This research applied the following processes based on the systematic literature

reviews mentioned in a related technical report (Kitchenham et al. 2009; Kitchenham

& Charters 2007). The next subsections summarize the research questions, search

process, inclusion and exclusion criteria, bibliography management and document

retrieval, and data extraction and analysis.

2.6.1 Research Questions

The research questions constitute one of the key factors to consider in any systematic

literature review (Kitchenham et al. 2009; Kitchenham & Charters 2007). For the

purpose of this research, four research questions were defined (see Chapter 1, section

1.4).

2.6.2 The Search Process

Essentially, this research started by implementing a literature search for related studies,

and a number of research studies/papers were found using Universiti Kebangsaan

Input Digest

24

Malaysia (UKM) Online Library and Internet services. However, the search process

continued until the end of this study. This process was conducted by using the search

engines of several digital libraries, such as:

i. IEEE Xplore

ii. ACM Digital Library

iii. Scopus

iv. Science Direct

v. Springer Link

vi. Google Scholar.

Key terms that are closely related to this research project are: “Software

tampering”, “Code integrity”, “Anti-tamper techniques or tools”, “Tampering

detection”, “Integrity verification”, and “Embedded system”.

2.6.3 Inclusion and Exclusion Criteria

For the purpose of conducting this review, a number of criteria were defined to specify

those studies to be included and those to be ignored/excluded. The following inclusion

criteria were applied:

i. Research studies published between 2008 and 2016 that relate to software

tampering in ESs;

ii. Research studies on techniques/tools related to software tampering detection.

On the other hand, this review excluded certain studies that met the following criteria:

i. Informally published (not defined or unknown journal or conference);

ii. Irrelevant to the above research questions;

25

iii. Older duplicate versions of the same study (research). However, if the research

paper was published in more than one journal or conference proceeding, then

the most complete version was chosen.

2.6.4 Bibliography Management and Document Retrieval

Mendeley Desktop 1.17.10 was used to manage all the citations and bibliography in

order to formulate the thesis report. The key terms defined above were used for

searching the above-mentioned search engines. The selected studies that appeared in

journal/conference publications were scanned using their title and abstract. All relevant

papers were then downloaded for further assessment and data extraction.

However, a number of research studies that were gathered from digital libraries

were duplications, so the older versions were neglected according to the exclusion

criteria (as mentioned above). Also, scanning and skimming techniques were applied

on the collected papers in order to capture the most closely related studies. Accordingly,

a number of studies were considered for further review.

2.6.5 Data Extraction and Analysis

This section involves collating and summarising the results of the included primary

studies, which could be represented in descriptive (non-quantitative) way (Kitchenham

et al. 2009; Kitchenham & Charters 2007).

a. Attack Model and Proposed Solutions

It is essential to introduce an attack model to discover the most convenient techniques

for securing an ES. In general, an ES can be exposed to two types of attack that relate

to access to the ES: remote attacks and physical attacks (Gelbart et al. 2009). Some

other researchers (Babar et al. 2011; Rogers & Milenkovic 2009) summarize attacks

against ESs as follows:

26

i. Physical attacks: involve direct tampering with hardware components, and

include spoofing attacks, splicing attacks, and replay attacks.

ii. Side-channel attacks: attempt to indirectly capture secure data based on side-

channel information from the system’s operations, and include timing attacks,

power analysis, and fault analysis attacks.

iii. Software attacks: exploit potential vulnerabilities (like buffer overflow attacks)

in many software, or inject malicious code (like Trojan horse programs or

viruses) in order to overwrite data on system memory or cause the processor to

execute an unordered or malicious section(s) of code.

iv. Network attacks: exploit potential vulnerabilities in the transmission medium.

These can be classified into active attacks (e.g., DoS attacks), or passive attacks

(e.g., monitoring and eavesdropping, and traffic analysis).

Mainly, there is a lack of joined-up effort to establish security in the

development methodology of information technology frameworks, which is a

consequence of various elements that are related to the development process, or the

environment in which the framework works. Embedded security challenges may

include heterogeneity, complexity, adaptability, decentralized control, time-to-market

pressures, performance, energy efficiency (power consumption), and security cost

(Babar et al. 2011; Mirjalili & Lenstra 2008).

Hence, those elements may make designers hesitant to concentrate on

information security accurately in the early phases of system development as it is

considered as an exercise in futility. Mirjalili and Lenstra (2008) define a four-level

security strategy in order to overcome those challenges. The proposed strategy consists

of:

i. Preventing the event or presentation of vulnerabilities by enhancement of design

and development processes;

ii. Applying different tolerance methods, for example, vulnerability recognition,

attack recovery, and self-adaptive procedures;

27

iii. Eliminating vulnerability during the development stage and the utilization stage;

and

iv. Predicting vulnerability, which is accomplished by conducting a system

assessment with respect to attack occurrence.

Furthermore, Babar et al. (2011) state that the main features of the security

framework and architecture consist of lightweight cryptography, physical security,

standardized security protocols, secure operating systems, future application areas, and

secure storage.

A wide variety of research has been carried out on three main types of solution:

hardware-level solutions, software-level solutions, and a combination thereof. For

example, a solution can be implemented by incorporating a hardware system as an

external checker/tester, or on the product level where a trusted part of the code exists to

verify the targeted system’s security. Table 2.1 summarizes the proposed solutions

(software only approach, hardware-only approach, and hybrid approach) in relation to

some of the mentioned issues and challenges (Babar et al. 2011).

Table 2.1 Comparison of existing solutions

Solution

approach

Issues (challenges) to be solved

Comments C
o

st

F
lex

ib
ility

P
er

fo
rm

a
n

ce

P
o

w
er

co
n

su
m

p
tio

n

Software only Yes Yes
Partially

No
No

Sometimes leads to the processing

capacity of the Embedded System

general-purpose processor being

overwhelmed.

Hardware only No No Yes Yes

Hybrid

approach

(Software and

Hardware)

Partially

Yes
Yes Yes Yes

Requires a clear vision of the complete

system and good interaction between

the hardware designers, the software

designers, and the security experts.

28

b. Data and Software Security

As shown above, this section presented the views of a number of researchers on

the threat model, ways in which to integrate security into the development methodology

of the ES, and the main types of proposed solution. Some additional studies that relate

to data and software security in ESs are reviewed below.

Firstly, Schwartz, Sie and Hallin (2009) suggest creating numerous hashes for

executable software, the combination of which represents a signature of the whole

executable software. Every individual hash corresponds to a particular part of the

executable software (called a code segment) such that every fractional digest is a

signature of less than all of the code bytes. When a request to load a code segment (e.g.,

a page or something else) of the code into the memory is made from a storage device, a

verification hash of the code segment is calculated. Then the verification digest is

contrasted with a fractional digest of the numerous hashes to verify the integrity of the

code segment.

A solution based on analysing the real-time execution of a section of code is

proposed by Zimmer et al. (2010). They utilize worst-case execution time (WCET)

bounds data to recognize code tampering in real-time cyber-physical systems (CPSs)

by instrumenting the tasks and schedulers to confirm timing analysis results in order to

ensure that the execution time has not exceeded the expected time bounds.

Another research study (Venčkauskas et al. 2012) attempts to develop a secure

mechanism for ensuring the software integrity of the ES that does not need a peripheral

hardware and infrastructure for generating the security key, storage and management,

and gives an adequate security level. Also, in order to save the code in an encrypted

format, cryptographic keys are created in real time, on interest, before the execution of

the encoded code module.

On the other hand, Rogers and Milenković (2009) outline the application of a

Parallel Message Authentication Code (PMAC) algorithm that takes into account the

utilization of a single hardware encryption module for both encryption and validation,

29

hence it is system-resource wise and cost-effective. They utilize block cipher encryption

as a part of their signature generation process. They introduce a mechanism for saving

memory costs by securing various instructions and/or data blocks by calculating

cryptographic signatures.

Also, a hardware monitoring solution has been applied by a number of

researchers. For instance, Mao and Wolf (2010) present a checking system to verify

proper software execution. Their proposal is focused on monitoring how the ES

processor utilizes system resources that are discrete from the binary code, and it could

initially be introduced for ESs in general and then for all targeted ESs. Since both

encryption and validation are regularly computationally intensive, some authenticated-

encryption algorithms are suggested.

In addition, a study has been conducted to design a remote verification system

where the proposed system is not required to exist on the network. Remote verification

needs a secure network protocol. For instance, Basile et al. (2012) add hardware-level

components to externally verify system integrity. They concentrate on recognizing

whether executed code has been altered by utilizing a field programmable gate array

(FPGA) to construct a secure architecture. The researchers’ objective is to design a

system that makes it hard to conduct a successful real-world attack. However, the

researchers do note that this security technique is not particularly suitable for high-

security systems such as those operated by the military and government.

A hardware monitoring module is also proposed by Abad et al. (2013) as a

means to validate a control flow graph when the system’s components are running in

real time. They develop a tool to generate a control flow graph of tasks running on the

system processor. The proposed module has its own memory to load the generated

graphs for further checking, and thus this may cause the processor to halt while

executing small blocks.

Alternatively, Perrig et al. (2015) introduce a protocol that enables secure

detection of and recovery from sensor node compromise. They claim that the protocol

can deal with recovering sensor nodes after they have been compromised, and that the

30

code update protocol can securely update the code of a sensor node, offering a strong

guarantee that the node has been correctly patched, or detect when the patch failed.

However, the assumption that attacker’s hardware devices are not present in the sensor

network during the repair is the main limitation of their study.

Whenever a pure hardware solution or pure software solution fails, a

combination of hardware and software solutions can be exploited. For example, Gelbart

et al. (2009) propose a system that adopts a joint compiler-hardware approach to protect

the software in the ES by encrypting data and code in the memory. They use FPGA to

decrypt executables, and validate the code integrity before it is executed on the

processor.

Additionally, Nimgaonkar et al. (2013a) introduce Memory Integrity

Verification (MIV) to ensure data and code integrity. In their method, data and code are

encrypted before they are inserted into the memory and are decrypted after they have

been read. This prevents an attacker from observing or modifying the protected

data/code. They consider energy efficiency and use the Merkle hash tree with

timestamps and timestamp cache to reduce the energy consumption of the verification

procedure. Kaczmarek and Wrobel (2014) have utilized cryptographic hash generation

and verification to introduce an integrity checking and recovery system solution to

increase computer system security by integrity the checking of files that are vital for

system operation. Also, they suggest storing all of the essential data in physically write-

protected storage to reduce the threat of illegal alteration.

 Actually, information security and privacy has direct influences on the current

smart metering infrastructure and on intelligent vehicles. So, a number of studies have

been carried out to investigate issues related to these two fields. For instance, seals can

increase the level of system integrity since they detect tampering when it occurs, and

then protective action can be applied when the seal is tampered with. Ransom et al.

(2010) present an invention that introduces suitable or applicable artifacts for securing

related information while it is being formed (created), saved and transferred by an

Energy Management (EM) device that is secured by a tamper detection seal unit that

functions to detect illegal access to the EM device and specify any action needed. In

31

one embodiment, the proposed system performs the following tasks: produces the

information; categorizes the information according to its integrity; recognizes when the

tamper detection seal unit has detected that an illegal modification has been executed;

and secures the integrity of the information when an alteration has occurred (i.e., by

applying the assigned protective action(s)).

At this point it is also worth mentioning the trusted computing base with secure

storage and public key cryptography proposed in Garcia and Jacobs (2011). The

researchers outline how multiparty processing units (local substations) can compute the

sum of their energy consumption without revealing the user’s information. They argue

that the current smart metering structure could be redesigned to include a trusted

segment in the meter device instead of relying on a one-sided trust approach at the

central station or local substation. This more versatile architecture where meter devices

have their own trusted segment would provide a certain level of independence.

Furthermore, Kumari, Kelbert and Pretschner (2011) propose usage control

mechanisms for information that has to be shared over the network by smart meters

connected to online social websites. They suggest that the information sent to the user

should be controlled by requesting that the user provide confirmation to the targeted

provider that he/she has the required usage control mechanism present and activated on

his/her system before the information is transferred.

In order to develop an applicable framework to protect code integrity against

intentional tampering, Nilsson, Sun and Nakajima (2008) introduce a Secure Firmware

updates Over The Air (SFOTA) protocol for intelligent vehicles in order to secure the

transmission of the firmware code between the portal and the vehicle. The proposed

framework facilitates code verification for firmware updates based on a simple hash

chain calculation on memory contents, a challenge-response mechanism, and the

inclusion of random numbers to prevent pre-image attacks. However, the key

management for using and storing the encryption key is not considered well as they

assume that a single cryptographic key is used for all the car’s control units.

32

Mobile phones are affected by similar issues. So, Chaugule, Xu and Zhu (2011),

propose the Specification Based Intrusion Detection Framework (SBIDF) that exploits

whether there are hardware interrupts in order to distinguish between activity that is

purely programming initiated and activity that is human initiated. It characterizes

specifications to identify the typical conduct pattern, and imposes this specification on

all third-party applications on the mobile phone at runtime by observing the inter-

component interface pattern among critical modules. At whatever point these critical

modules start up for implementation, the Authentication Module calculates an MD5

hash over the TEXT portion of the module. Then, in order to establish the integrity of

the critical module, the Authentication Module compares the hash with a pre-computed

value of the hash of that segment. This pre-computed hash value is available in the

Specification Database. It can be computed by the phone stack supplier before delivery

to the client, and after that statically saved in the Specification Database for future

utilization.

2.7 REAL-WORLD EXAMPLES

There exist a number of real-world projects on data and code security in ESs, including

for instance, the EVITA project (Community et al. 2013) and INSIKA project

(Reckendorf et al. 2010) that have been introduced and managed in European countries.

The EVITA project (http://www.evita-project.org/) has introduced three different

security modules to protect on-board communications in vehicles by applying a

principle that prevents external car connections. The project uses a Hardware Security

Module (HSM) that facilitates the means to secure platform safety, to guarantee the

integrity and secrecy of significant items, and to improve cryptographic processes,

thereby the securing crucial resources of the system. The HSM contains the following

components: a Symmetric Cryptographic Engine, Asymmetric Cryptographic Engine,

Hash Engine, Random Number Generator, and Secure CPU.

On the other hand, the INSIKA project (http://www.insika.de/en/), a German

working group on cash registers funded by the German Federal Ministry of Economics

and Technology, was established in 2008. The aim of this project is to introduce an

applicable innovation for prohibiting information deception in Electronic Cash

33

Registers (ECRs). The main idea is based on using digital signatures to detect any illegal

modifications to the protected information. The basic idea of this project is based on

asymmetric cryptography (public and private key algorithms) and the SHA-1 algorithm.

2.8 CRITICAL ANALYSIS

Researchers have identified two main types of attack that may target an ES: remote

attacks and physical attacks (Gelbart et al. 2009). This research focuses on physical

attacks that may be conducted by manipulating certain functions or modules or their

parameters of an attacked system. In addition, lack to integrate security into the

development methodology of information technology frameworks from early phases

may produce potential vulnerabilities (unintentionally) hidden within the developed

system.

Several solutions have been proposed for tackling such attacks. For example,

researchers have suggested creating numerous hashes for executable software

(Schwartz et al. 2009) while using the timing information based on an analysis of the

static worst-case execution time of a targeted system (Zimmer et al. 2010). Other studies

have proposed developing a secure mechanism for ensuring system integrity

(Venčkauskas et al. 2012), an algorithm that utilizes block cipher encryption and a

cryptographic signature (Rogers & Milenkovic 2009), and monitoring the ES processor

to verify that there is proper system execution (Mao & Wolf 2010). Meanwhile, Basile

et al. (2012) have utilized FPGA to construct a secure architecture intended for low-

security systems and Abad et al. (2013) have developed a tool to validate control flow

while the targeted system is running.

However, a number of the above-mentioned solutions are not adaptable and may

need reprogramming or additional hardware as in the case of Venčkauskas et al. (2015)

or additional constraints as in the case of Basile et al. (2012) as the key allocation should

be carefully considered in order to minimize collision. In addition, certain solutions may

cause the processor to halt while executing small blocks because the developed system

needs its own memory to load the generated graph, as in the case of Abad et al. (2013).

34

Even though the protocol introduced by Perrig et al. (2015) enables secure

detection and deals with recovering sensor nodes after a compromise, the assumption

that the attacker’s hardware devices are not present in the sensor network during the

repair is the main research issue outstanding in their work.

Despite the different types of technique that have been invented to help in

implementing system integrity verification, the utilization of hash functions is still an

effective solution in many proposals (Chaugule et al. 2011; Nimgaonkar et al. 2013a,

2013b; Schwartz et al. 2009). However, there are certain weaknesses in some of the

proposed designs, such as the use of a single cryptographic key as in the case of Nilsson

et al. (2008). Besides, a number of researchers’ proposals were based on hardware

solutions such as using an on-chip FPGA-based hardware component (Gelbart et al.

2009), or dedicated storage (Kaczmarek & Wrobel 2014).

Nevertheless, hash functions have been useful in developing many applications

and protocols, and they have been used as a measurement agent in the Trusted

Computing Group (Almohri, Yao & Kafura 2014; Brasser et al. 2016; Coker et al. 2011;

Dalai et al. 2012; Ferguson et al. 2010; Myles & Jin 2010; Perrig et al. 2015), and in

real-world projects such as the EVITA (Community et al. 2013) and INSIKA

(Reckendorf et al. 2010) projects.

However, conducting integrity verification of remote systems needs a secure

protocol that is well designed, and thus analysing and evaluating the secrecy and

authentication features of such protocols is essential (Basile et al. 2012; Gargantini et

al. 2009, 2010; Woodcock et al. 2009).

2.9 MODELLING AND EVALUATING THE SECURITY PROTOCOLS USING

THE FORMAL METHOD APPROACH

The era of advanced communications has emerged, increasing the use of digital devices

to handle many online transactions, such as online banking, distance education, online

shopping, etc. The protocols used in such systems play an essential role in gaining user

confidence. Certainly, protocol verification is a major activity during system

35

development, and such verification protocols should be robust and secure (Shaikh &

Devane 2010) . Hence, in this research, the secrecy and authentication specifications of

the proposed protocol need to be verified.

There are two main methods that can be used for analysing security protocols:

formal models and computational models (Blanchet 2012; Cortier, Kremer & Warinschi

2011; Pironti, A. Pozza, D. & Sisto 2011). While formal models are very precise and

accurate in presenting system specifications and permit straightforward and proficient

reasoning about the properties of the security protocols, they are not widely used.

System analysts find that generating formal models is too complicated since they are

not familiar with mathematical notations (Shukur et al. 2006; Sullabi & Shukur 2008).

Also, the algebraic perspective of cryptography depends on accurate encryption axioms

(Ryan et al. 2010):

i. The only way to decode ciphered information is to know the corresponding key;

ii. Ciphered data do not uncover the key that was used to cipher them;

iii. There is adequate redundancy in ciphered data, so that the decoding algorithm

can distinguish whether a cipher text was encoded with the normal key;

iv. There is no way to extract original data from a hashed value;

v. Different data are constantly hashed to various hash values;

vi. Freshly calculated values are constantly different from any existing value and

not guessable; and

vii. A public key does not uncover its secure key.

On the other hand, computational models represent data as bit-strings and

algorithms executed on Turing machines. They utilize a probabilistic approach to permit

part of the precise encryption presumptions to be declined. However, they involve more

effort during analysis, and typically the proofs are more hard to program (Blanchet

2012).

36

A number of researchers have built prototype tools specifically tailored for

verifying security protocols, such as the Naval Research Laboratory (NRL) Protocol

Analyser, on-the-fly model checker (OFMC), and many others. Other researchers have

used general model checkers, such as Failures Divergence Refinement (FDR), and have

shown how this tool could be used to describe and analyse security protocols (Lowe et

al. 2009; Pironti, Pozza & Sisto 2011; Ryan et al. 2010; Shaikh & Devane 2010). Note

that FDR is the de-facto model checker for the CSP approach, which has been developed

and refined over a number of years (Bartels & Kleine 2011; Kleine & Göthel 2010; Sun,

Liu & Dong 2008).

2.10 CONCLUSION

In light of the above, the following can be concluded. Firstly, nowadays, the ES can be

considered a core entity for many digital devices and therefore the digital world.

However, in many application domains, ESs are facing an increase in security attacks

such as system tampering. In order to counter this threat, integrity verification has been

explicitly proposed by many researchers. Yet, system tampering remains one of main

challenges that must be resolved by ES designers and developers.

Secondly, there are two main types of attack: remote attacks and physical

attacks, and three main types of proposed solution: hardware-level solutions, software-

level solutions, and combinations of the two.

Thirdly, the hash function has been used in proposed solutions for a long time

by many studies, and it is still an effective solution for system integrity verification

(Chaugule et al. 2011; Community et al. 2013; Gelbart et al. 2009; Kaczmarek &

Wrobel 2014; Nilsson et al. 2008; Nimgaonkar et al. 2013a, 2013b; Reckendorf et al.

2010; Schwartz et al. 2009).

Fourthly, the protocols used in many systems play an essential role in gaining

user confidence. Certainly, protocol verification is a major activity during system

development, and such verification protocols should be robust and secure.

37

Fifthly, while formal models are very precise and accurate in presenting system

specifications and permit straightforward and proficient reasoning about the properties

of security protocols, they are not widely used.

Thus, through this review of previous research, it can be concluded that, despite

the progress made in previous works, it remains important to find solutions for

tampering detection and to proceed in this research to contribute (even in a simple

manner) to solving this problem by proposing an integrity verification framework. The

following chapters aim to achieve the objectives of this research, which include the

proposal of a system architecture with a secure protocol.

3838

CHAPTER III

METHODOLOGY

3.1 INTRODUCTION

The previous chapter discussed the literature review for the study. This chapter consists

of four sections. The chapter begins with this introduction to the chapter and is followed

by section two that introduces the six main research phases conducted for the study.

Then, section three explains the formal method approach and the use of Casper and the

FDR model checker for representing the security protocols and examining their secrecy

and authentication features. Finally, section four concludes the chapter.

3.2 USE OF DESIGN SCIENCE RESEARCH METHODOLOGY FOR THE

RESEARCH

Information system researchers have adopted an applied discipline by which to conduct

their studies. They have used DSRM to incorporate the principles, practices, and

procedures needed to create effective artifacts. It serves as an accepted framework for

design science research and as a template for presenting the related knowledge.

Moreover, it can guide a researcher to create an appropriate solution to a problem when

using a conventional research model. Such a framework is necessary for presenting the

proposed artifact as a conceptual model, which helps the targeted audience to recognize

and evaluate the outcomes of the conducted research (A. Hevner & Chatterjee 2010a;

Geerts 2011; Peffers et al. 2007). Hence, DSRM is adopted in this study in order to

design the research methodology that acts as guidance for conducting this research

effectively. Figure 3.1 shows the process model that consists of six DSRM phases in a

nominal sequence.

3939

3
9

Figure 3.1 DSRM process for this research study

40

3.2.1 Problem Identification and Motivation

Embedded systems have become a part of the digital era, and their applications vary

from small digital devices such as digital cameras and mobiles to large and crucial

instruments such as smart cars and airplanes. They usually accomplish critical functions

such as monitoring and controlling real-time objects and sensors, and processing vital

data and information.

However, ESs face security challenges because they usually operate in a

physically unprotected environment (Nimgaonkar et al. 2013a, 2013b; Sridhar et al.

2012). Accordingly, the fraudulent usage of digital measurement instruments has

become one of the serious issues that needs to be tackled by security experts in (almost)

every country (Al-Wosabi & Shukur 2015; Al-Wosabi, Shukur & Ibrahim 2015;

Ibrahim et al. 2015).

Hence, tampering detection is gaining more attention and being given greater

priority by ES designers and developers (Babar et al. 2011; Santucci 2010). In order to

understand the resources required to complete this phase, Chapter 1 (sections 1.2 and

1.3) highlight the problem and motivation for conducting this research.

3.2.2 Objectives of the Solution

After defining the problem, the desired objective is declared in the second phase. The

objective can be inferred from the defined problem and the literature review that was

conducted to understand promising and achievable solutions. In fact, the research

conducted in the previous phase highlights the issue of software tampering in ESs, and

therefore, the proposal of a solution (i.e., a designed artifact) with secure

communication to remotely verify the code integrity of a targeted ES is considered as

the main objective of this research.

Basically, the major challenges encountered in designing a security protocol

include integrating the secrecy and authentication features and evaluating those features

41

in an acceptable and reliable approach. Hence, the formal method approach is applied

because of the reliability and accuracy of the results of that approach. In order to identify

and include the resources required to execute this phase, Chapter 2 reviews some

interesting research studies and finds a number of existing (possible and viable)

solutions related to the defined problem. Moreover, the defined objectives related to

this research are listed in Chapter 1 (section 1.5).

3.2.3 Design and Development

This phase describes how the proposed artifact should act and how it could be

assembled. Clearly, the literature review of related research that could be brought to

bear in this study is the essential resource required to move from the second phase to

accomplish this activity.

Firstly, the study proposes a conceptual framework that is partially extracted

from the ISO/IEC/IEEE 42010:2011 model. It links five main components: potential

stakeholders, main concerns, system-of-interest, architecture, and targeted mission.

Secondly, the study describes the code integrity verification system that consists

of two main components. The task of the first component is to scan and gather

information about the targeted system and store the required data in a database prepared

for this purpose. The second component is used when the user requests that a code

integrity check be performed on the targeted system. In addition, the protocol is

designed to secure the data exchanged between the user program and the remote server

system that receives the request for system integrity verification. The protocol features

that need to be applied include the secrecy and reliability of the messages exchanged

between the two parties. The proposed artifact is designed from basic cryptographic

primitives that can be applied to achieve the main task of the described solution.

Further details of the proposed conceptual framework, the system architecture,

and the secure code integrity verification protocol can be found in Chapter 4 (sections

4.2, 4.3, and 4.4).

42

3.2.4 Demonstration

The prototype (i.e., the demonstration) that a designer usually develop is one of the

typical methods of artifact design. Usually, the prototype is an incomplete version of

the artifact under the development that provides the minimum required features either

for the purpose of presentation or evaluation (Dennis Wixom & Roth 2012; Frank et al.

2011).

In his article titled “Arduino for Teaching Embedded Systems. Are Computer

Scientists and Engineering Educators Missing the Boat?” Peter Jamieson attempts to

determine the suitability of utilizing the Arduino platform to teach an ES curriculum for

computer science and engineering students. In his conclusion, he mentions that the

students highly praised the Arduino platform, and he believes that the students’ final

projects, which were related to the ES course, were better and more creative than before

(Jamieson 2011).

In fact, the Arduino platform has been widely integrated into many scientific

research studies for the purpose of developing different systems, such as designing a

teaching and practising interaction system for musical applications (Berdahl & Ju

2011), designing customized educational robots (García-Saura & González-Gómez

2012), designing the Citizens as Sensors platform (Davidovic, Rančić & Stoimenov

2013), creating the Gesture Recognition Toolkit (Gillian & Paradiso 2014),

demonstrating a building automation system (Gokceli et al. 2015), and designing a

smartphone-based spectrometer for testing fruit ripeness (Das et al. 2016).

Thus, this study designs a digital measurement prototype using the Arduino Uno

board, and develops the integrity verification system that performs two main functions

using Java language. The first function is used to scan an ES’s code, store the encrypted

form of that code into the designed database, and implement a secure one-way function

(the cryptographic hash SHA-2) for computing a hash value. Then, the second function

scans the targeted system and generates its HMAC value in order to compare it with the

equivalent digest value of the system code previously stored in the database, and then

43

shows the result of the integrity verification. Details of the developed prototype are

provided in Chapter 5 (section 5.3).

3.2.5 Evaluation

This phase involves observing and estimating how well the proposed artifact supports

a solution to the defined problem. Evaluation is an essential component in the design

science research process (A. Hevner & Chatterjee 2010b). Validating the artifact means

checking that the designed artifact works and does what it is meant to do, and that it is

dependable in operational terms of achieving its main objective (Gregor & Hevner

2013). Thus, in this study the defined functions, and the secrecy and the authentication

specifications of the proposed architecture and protocol are validated in this phase.

Nowadays, researchers emphasize the importance of using a formal method

approach for system development, especially when the researcher needs to formally

prove its security attributes (Gargantini et al. 2010). Chapter 5 (sections 5.4, 5.5, and

5.6) present the results of the reliability assessment and the evaluation tools used.

Specifically, the study models and analyses the proposed system architecture with the

integrity verification protocol using the process algebra CSP approach, and then

evaluates the designed artifact using Casper and the model checker FDR. Note that

Appendix A shows the Casper syntax used to specify the proposed protocol.

In addition, the approbation of the proposed solution requires the cooperation of

professionals interested in system fraud detection. So, an expert evaluation survey is

conducted using both closed- and open-ended questions. The expert evaluation

questionnaire is designed by referring to two research studies (Najeh 2016; Snijders et

al. 2015), and Appendix B contains the expert evaluation questionnaire developed for

the proposed framework.

Accordingly, at the end of this stage and based on the evaluation results, the

study may iterate back to the design and development stage in order to enhance the

proposed system architecture and protocol.

44

3.2.6 Communication

Releasing the details of the study and the proposed design is important so that interested

parties can determine the credibility of the research (Creswell 2014). Therefore, a

number of research papers related to this study have been published in selected journals

and presented at a number of conferences in order to communicate the research problem

and outcomes of the study. The publications covered the literature reviewed for this

research study, the proposed system architecture and protocol, and the evaluation

results. Appendix C presents the papers that have been published regarding this

research.

3.3 FORMAL METHOD APPROACH

Researchers state that formal models are more accurate in representing system

specifications and permitting proficient reasoning about the secrecy and authentication

features of security protocols. However, a number of researchers find it hard to create

formal models because they are not familiar with mathematical notations.

This section explains the CSP formal method approach in a simplified way so

that the reader can understand it. For example, Figure 3.2 describes the Needham-

Schroeder Public Key Protocol (Lowe et al. 2009; Ryan et al. 2010), which involves a

sender S, a receiver R, a sender’s public key PKey(S), a receiver’s public key

PKey(R), and a message m encrypted with key {m}key.

Figure 3.2 Needham-Schroeder Public Key Protocol

In this protocol, a sender attempts to establish secure communication with

another agent (a receiver). Hence, the sender seeks to successfully perform mutual

authentication, which means that each agent aims to ensure the accuracy of the identity

of the other agent. First, the sender generates a nonce value ns. Then the sender sends

S → R : {S, ns}PKey(R)

R → S : {ns, nr}PKey(S)

S → R : {nr}PKey(R)

45

this ns along with the sender’s identity to the receiver, both encrypted using the

receiver’s public key (as shown in Figure 3.2: message 1).

When the receiver receives the encrypted message the receiver, and only the

receiver, can decrypt that message using the receiver’s private key to extract the

received ns. The receiver then generates a fresh nonce value nr and sends this value

along with the received nonce value ns to the sender, both encrypted under the sender’s

public key (as shown in Figure 3.2: message 2). When the sender gets and decrypts

those values, the sender verifies his/her nonce value that the sender sent to the receiver

(i.e., ns). If that value is verified, the sender is assured that the sender is communicating

with the targeted receiver because only that receiver could have extracted the sent nonce

ns from message 1.

The sender then returns the nonce value received from the receiver (i.e., nr),

ciphered using the receiver’s public key (as shown in Figure 3.2: message 3). When the

receiver gets and decrypts this message, the receiver verifies his/her nonce value. If

his/her nonce value is valid, then it would seem that the receiver can be assured that the

receiver is communicating with an authenticated sender because only that sender could

have extracted the sent nonce nr from message 2.

Basically, each process in CSP uses two channels – receive and send – to

communicate with other processes via the medium. Thus the input of a message m into

a process would be represented as receive.x.y.m and the output of a message m

from the process would be represented as send.x.y.m, where x and y (either an

agent or a server) are the names of the sender and addressee, respectively, and m is the

message content. The CSP notation for the above protocol messages, in Figure 3.2, can

be described as shown in Equation 3.1:

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟(𝑆, 𝑛𝑠) = 𝑒𝑛𝑣?𝑅 ∶ 𝐴𝑔𝑒𝑛𝑡 \ {𝑆} → 𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅)

→
𝑛𝑟 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑆, 𝑅, 𝑛𝑠, 𝑛𝑟)

)

(3.1)

46

where Nonce is the set of all the valid nonce values that the agents can accept.

Note that CSP models always ensure that every generated nonce is really

different from all the nonce values that already exist in the tested system. Also, whereas

the PKey(S) and PKey(R) are the public keys of the sender and receiver,

respectively, and can be retrieved by any agent, the corresponding private key is only

known to the authenticated agent.

The connection between the two agents is initiated by the environment of the

designed system. The “𝑒𝑛𝑣? 𝑅 ∶ 𝐴𝑔𝑒𝑛𝑡 \ {𝑆}” represents this meaning by telling the

sender to open a session with a targeted agent R; and the notation “\ {𝑆}” prevents the

sender requesting communication with him/herself. Then, the sender’s role states that

the sender S uses its output channel to send to a targeted agent R its ID and nonce value

encrypted using the receiver’s public key. Since the processes cannot be certain that the

messages transferred during the communication are either correctly delivered or of the

right form, an external choice can be used over the rest of all the acceptable messages.

However, for the time being at least, the specification of the agent action when it gets

into the Session state is not considered.

Now, Equation 3.2 describes the role of the receiver:

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟(𝑅, 𝑛𝑟) =
𝑆 ∈ 𝐴𝑔𝑒𝑛𝑡
𝑛𝑠 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑒𝑛𝑑. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑅, 𝑆, 𝑛𝑠, 𝑛𝑟))

(3.2)

Observe that the receiver’s role states that the communication is started when

an agent R receives a message from an initiator (i.e., S) who runs the protocol with

him/her.

Generally, agents can be modelled as being capable of undertaking many

synchronized runs in sender and receiver roles. The generalized interleave operator

(||| i∈I Pi) can be used to describe this in CSP, where each Pi represents a single

47

protocol run. Moreover, to represent the system using different nonce values, pairwise

disjoint sets Nonce_Is can be used to denote all of the nonce values of agent S in the

role of initiator (i.e., sender) and Nonce_Rs can be used to denote all of the nonce

values of agent S in the role of responder (i.e., receiver). Hence, a particular agent S

can be represented as in Equation 3.3:

Users = ||| n∈ Nonce_Is Initiator(s,n)

|||

||| n∈ Nonce_Rs Responder(s,n)

(3.3)

3.3.1 Secrecy Features

In order to describe the secrecy features in the above protocol, Claim_Secret

message can be inserted at the end of the protocol run description. This property

clarifies that the intruder cannot obtain the transferred message during a protocol run

whenever the system has defined that particular data items should be known to only

authenticated parties (i.e., the secrecy property). Hence, to ensure the secrecy of the

sender nonce value ns, CSP notation could express this expectation in the description

of Initiator as shown in Equation 3.4.

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟(𝑆, 𝑛𝑠) = 𝑒𝑛𝑣?𝑅 ∶ 𝐴𝑔𝑒𝑛𝑡 \ {𝑆} → 𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅)

→
𝑛𝑟 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑙𝑎𝑖𝑚_𝑆𝑒𝑐𝑟𝑒𝑡. 𝑆. 𝑅. 𝑛𝑠 →
𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑆, 𝑅, 𝑛𝑠, 𝑛𝑟)

)

(3.4)

This property states that the protocol guarantees that the sender nonce value ns

used in a protocol run apparently between the sender S and responder R created by the

sender S should be secret during the entire protocol run, and hence, the intruder should

not be able to gain possession of the sender nonce value ns.

48

Moreover, the expectation of the responder’s role could be written in a similar

way by using the Claim_Secret message at the end of the protocol run description

as shown in Equation 3.5:

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟(𝑅, 𝑛𝑟) =
𝑆 ∈𝐴𝑔𝑒𝑛𝑡
𝑛𝑠 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑒𝑛𝑑. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑙𝑎𝑖𝑚_𝑆𝑒𝑐𝑟𝑒𝑡. 𝑅. 𝑆. 𝑛𝑟 →
𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑅, 𝑆, 𝑛𝑠, 𝑛𝑟))

(3.5)

The above expression (Equation 3.5) declares the responder’s role and at the end

of it states that the nonce value nr created by the responder R must be secret during the

entire protocol run, and hence, the intruder should not be able to gain possession of the

responder nonce value nr.

Moreover, the requirement by an agent that a certain message m must be secret,

and hence, the intruder must not be able to access it, is shown in Equation 3.6:

𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑙𝑎𝑖𝑚_𝑆𝑒𝑐𝑟𝑒𝑡. 𝑆. 𝑅.𝑚 in 𝑡𝑟𝑎𝑐𝑒 ⇒ ¬ (𝑙𝑒𝑎𝑘.𝑚 in 𝑡𝑟𝑎𝑐𝑒) (3.6)

where a trace of a process is a predetermined sequence of symbols recording the events

in which the process has been involved up to a certain instant in time. Therefore, the

protocol specification of the sender states that the intruder must not be able to obtain

the sender nonce value ns as shown in Equation 3.7:

𝑆𝑒𝑐𝑟𝑒𝑡𝑆,𝑅(𝑡𝑟𝑎𝑐𝑒)

= ∀ 𝑛𝑠 • 𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑙𝑎𝑖𝑚_𝑆𝑒𝑐𝑟𝑒𝑡. 𝑆. 𝑅. 𝑛𝑠 in 𝑡𝑟𝑎𝑐𝑒

∧ 𝑆 ∈ 𝐻𝑜𝑛𝑒𝑠𝑡 ∧ 𝑅 ∈ 𝐻𝑜𝑛𝑒𝑠𝑡

⇒ ¬ (𝑙𝑒𝑎𝑘. 𝑛𝑠 in 𝑡𝑟𝑎𝑐𝑒)

(3.7)

and the protocol specification of the responder states that the intruder must not be able

to obtain the responder nonce value nr as shown in Equation 3.8:

49

𝑆𝑒𝑐𝑟𝑒𝑡𝑅,𝑆(𝑡𝑟𝑎𝑐𝑒)

= ∀ 𝑛𝑟 • 𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑙𝑎𝑖𝑚_𝑆𝑒𝑐𝑟𝑒𝑡. 𝑅. 𝑆. 𝑛𝑟 in 𝑡𝑟𝑎𝑐𝑒

∧ 𝑆 ∈ 𝐻𝑜𝑛𝑒𝑠𝑡 ∧ 𝑅 ∈ 𝐻𝑜𝑛𝑒𝑠𝑡

⇒ ¬ (𝑙𝑒𝑎𝑘. 𝑛𝑟 in 𝑡𝑟𝑎𝑐𝑒)

(3.8)

Hence, it should be possible to describe the complete secrecy requirements of

both agents (the initiator S and the responder R) based on the above expressions as

follows: If an agent S has completed a protocol run apparently with an honest and

uncompromised agent R, then the nonce value ns created by the agent S and received

during that run by the agent R is not known to anyone other than the agent R. Similarly,

if an agent R has completed a run with an honest and uncompromised agent S, then the

nonce value nr created by the agent R and received by the agent S is not known to

anyone other than the agent S.

3.3.2 Authentication Features

Now, it is necessary to conduct an entity authentication procedure, which means

verifying an entity’s claimed identity. An authentication property provides assurance to

the responder R that a communication exchange has occurred apparently with the sender

S, and also that the sender S is following a run apparently with that responder R.

In order to represent the authentication property, two events – Commit.r.s

and Running.s.r – can be used. The first event can be introduced into the

responder’s description to identify the point at which the sender has been authenticated

by the responder. The occurrence of this event in the responder’s run states that the

responder R has completed a protocol apparently with the initiator (i.e., the sender S).

The Running.s.r event is introduced into the sender’s description to

identify the point that must have been attained by the time the responder R performs the

Commit.r.s event. The occurrence of this event in the sender’s run states that the

sender S is following a run apparently with the responder R. If a Running.s.r event

50

has taken place by the time the Commit.r.s event is performed, then authentication

between the two agents is achieved.

Since the above protocol aims to establish authentication in both directions, at

this point in the discussion it would be worthwhile to describe the authentication of the

initiator by the responder and also to explain how the initiator authenticates the

responder. Note that the above protocol between the agent S and the agent R involves

the two nonce values, ns and nr. So, the definition of the above events includes these

values that are related to the protocol run.

Firstly, the authentication of the initiator by the responder could be identified

(as shown in Figure 3.3), and thus the defined protocol descriptions could be enhanced

as shown in Equation 3.9:

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟(𝑆, 𝑛𝑠) = 𝑒𝑛𝑣?𝑅 ∶ 𝐴𝑔𝑒𝑛𝑡 \ {𝑆} → 𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅)

→
𝑛𝑟 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑠𝑖𝑔𝑛𝑎𝑙. 𝑅𝑢𝑛𝑛𝑖𝑛𝑔_𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑆. 𝑅. 𝑛𝑠. 𝑛𝑟 →

𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑆, 𝑅, 𝑛𝑠, 𝑛𝑟)
)

(3.9)

Moreover, the expectation of the responder’s role could be written (as shown in

Equation 3.10) in a similar way by using the Commit event at the end of the protocol

run description:

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟(𝑅, 𝑛𝑟)

=
𝑆 ∈𝐴𝑔𝑒𝑛𝑡
𝑛𝑠 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑒𝑛𝑑. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑜𝑚𝑚𝑖𝑡_𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑅. 𝑆. 𝑛𝑠. 𝑛𝑟 →
𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑅, 𝑆, 𝑛𝑠, 𝑛𝑟))

(3.10)

51

Figure 3.3 Authentication of initiator by responder

Furthermore, it is desirable to define the trace specification which states that

whenever a Commit event appears in the trace then a corresponding Running event

should present beforehand in that trace:

𝐶𝑜𝑚𝑚𝑖𝑡 𝐢𝐧 𝑡𝑟𝑎𝑐𝑒 ⇒ 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐢𝐧 𝑡𝑟𝑎𝑐𝑒 (3.11)

This specification could be abbreviated as:

𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐩𝐫𝐞𝐜𝐞𝐝𝐞𝐬 𝐶𝑜𝑚𝑚𝑖𝑡 (3.12)

Hence, the above property will require that:

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 ∈ 𝐻𝑜𝑛𝑒𝑠𝑡

⇒ 𝑠𝑖𝑔𝑛𝑎𝑙. 𝑅𝑢𝑛𝑛𝑖𝑛𝑔_𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑆. 𝑅. 𝑛𝑠. 𝑛𝑟 𝐩𝐫𝐞𝐜𝐞𝐝𝐞𝐬

(3.13)

𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑜𝑚𝑚𝑖𝑡_𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑅. 𝑆. 𝑛𝑠. 𝑛𝑟

which could be represented as:

{s.ns}PKey(R)

{ns, nr}PKey(S)

{nr}PKey(R)

Running_Initiator.S.R.ns.nr

Responderr

Commit_Responder.R.S.ns.nr

Initiators

52

𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑜𝑚𝑚𝑖𝑡_𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑅. 𝑆. 𝑛𝑠. 𝑛𝑟 𝐢𝐧 𝑡𝑟𝑎𝑐𝑒

⇒ 𝑠𝑖𝑔𝑛𝑎𝑙. 𝑅𝑢𝑛𝑛𝑖𝑛𝑔_𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑆. 𝑅. 𝑛𝑠. 𝑛𝑟 𝐢𝐧 𝑡𝑟𝑎𝑐𝑒

(3.14)

Secondly, the authentication of the responder by the initiator could be identified

(as shown in Figure 3.4), and thus the defined protocol descriptions could be enhanced

as shown in Equations 3.15 and 3.16:

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟(𝑆, 𝑛𝑠) =

𝑒𝑛𝑣? 𝑅 ∶ 𝐴𝑔𝑒𝑛𝑡 \ {𝑆} → 𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅) →

𝑛𝑟 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑠𝑒𝑛𝑑. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑖𝑔𝑛𝑎𝑙. 𝐶𝑜𝑚𝑚𝑖𝑡_𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑆. 𝑅. 𝑛𝑠. 𝑛𝑟 →
𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑆, 𝑅, 𝑛𝑠, 𝑛𝑟)

)

(3.15)

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟(𝑅, 𝑛𝑟) =

𝑆 ∈𝐴𝑔𝑒𝑛𝑡
𝑛𝑠 ∈ 𝑁𝑜𝑛𝑐𝑒

(

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑆, 𝑛𝑠}𝑃𝐾𝑒𝑦(𝑅) →

𝑠𝑖𝑔𝑛𝑎𝑙. 𝑅𝑢𝑛𝑛𝑖𝑛𝑔_𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑅. 𝑆. 𝑛𝑠. 𝑛𝑟 →

𝑠𝑒𝑛𝑑. 𝑅. 𝑆. {𝑛𝑠, 𝑛𝑟}𝑃𝐾𝑒𝑦(𝑆) →

𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑆. 𝑅. {𝑛𝑟}𝑃𝐾𝑒𝑦(𝑅) →

𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑅, 𝑆, 𝑛𝑠, 𝑛𝑟))

(3.16)

Figure 3.4 Authentication of responder by initiator

{s.ns}PKey(R)

{ns, nr}PKey(S)

Running_Responder.R.S.ns.nr

Responderr

{nr}PKey(R)

Initiators

Commit_Initiator.S.R.ns.nr

